
6080 Vol. 48, No. 23 / 1 December 2023 / Optics Letters Letter

Temporal resolution of ultrafast compressive
imaging using a single-chirped optical probe
Haocheng Tang,1 Miguel Marquez,2 Ting Men,1 Yaodan Hu,1 Weiqi Tang,1 Jinyang
Liang,2 AND Zhengyan Li1,3,∗
1School of Optical and Electronic Information and Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and
Technology, Wuhan 430074, China
2Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, Québec
J3X1P7, Canada
3Optics Valley Laboratory, Wuhan 430074, China
*zhengyanli@hust.edu.cn

Received 5 September 2023; revised 14 October 2023; accepted 24 October 2023; posted 24 October 2023; published 15 November 2023

Ultrafast compressive imaging captures three-dimensional
spatiotemporal information of transient events in a single
shot. When a single-chirped optical probe is applied, the
temporal information is obtained from the probe modu-
lated in amplitude or phase using a direct frequency–time
mapping method. Here, we extend the analysis of the tem-
poral resolution of conventional one-dimensional ultrafast
measurement techniques such as spectral interferometry to
that in three-dimensional ultrafast compressive imaging. In
this way, both the amplitude and phase of the probe are nec-
essary for a full Fourier transform method, which obtains
temporal information with an improved resolution deter-
mined by probe spectral bandwidth. The improved temporal
resolution potentially enables ultrafast compressive imaging
with an effective imaging speed at the quadrillion-frames-
per-second level. © 2023 Optica Publishing Group

https://doi.org/10.1364/OL.505260

Single-shot ultrafast imaging captures transient dynamic scenes
of matter using one or multiple laser pulses, equivalent to tak-
ing movie frames with a temporal resolution of femtoseconds.
The multi-probe geometry uses a few probing laser pulses with
different time delays, offering snapshots of ultrafast events with
clearly defined frame rate and temporal resolution [1–6]. In the
single-probe geometry, the time-dependent dynamics is contin-
uously recorded by either a streak camera in the time domain
[7,8] or a chirped probe pulse in the frequency domain.

The idea of single-chirped probe has been early demonstrated
in single-shot spectral interferometry utilizing phase modula-
tion on the probe [9–11]. There are two approaches to resolving
time-dependent information. One takes advantage of the linear
chirp of the probe pulse, and the temporal information is directly
mapped onto the spectrum of the probe [9]. However, the direct
frequency–time mapping scheme has a temporal resolution
degraded by the excessive chirp of the probe [10]. To solve this
problem, the other approach carefully characterizes the probe
phase, so a full Fourier transform scheme reveals the probe mod-
ulation in the temporal domain with an enhanced temporal reso-
lution only determined by the probe spectral bandwidth [12,13].

Analogous to conventional single-shot spectral interferome-
try, the spatiotemporal information is obtained from the mod-
ulated spectrum of the probe using the direct frequency–time
mapping approach under the framework of compressive imag-
ing [14,15]. In this case, imaging frame rates up to multi-trillion
frames per second have been reported by simply calculating the
inverse of the reconstructed frame temporal interval [14,15];
however such a definition of the frame rate ignores the temporal
resolution limit of the direct frequency–time mapping scheme
[10]. Recently we have experimentally demonstrated compres-
sive imaging of both phase and amplitude spatial–spectral
profiles simultaneously [16], allowing the full Fourier transform
scheme to be applied for temporal information with improved
resolution.

Here we extend the analysis of temporal resolution from
one-dimensional ultrafast dynamics measurement to that in
three-dimensional ultrafast compressive imaging, using a single-
chirped probe pulse. Compared to previous experimental
demonstration of ultrafast compressive imaging based on the full
Fourier transform scheme [16], we focus on theoretical analysis
and numerical simulations to prove the concept without being
interfered by practical experimental errors and technical chal-
lenges. By comparing two different approaches for obtaining
temporal information in the context of three-dimensional ultra-
fast compressive imaging, it is shown that phase information is
critical to perform the full Fourier transform procedure, yield-
ing an improved temporal resolution compared to the direct
frequency–time mapping case.

Compared to previous one-dimensional studies of the direct
frequency–time mapping and full Fourier transform schemes
applied to temporally phase-modulated probe pulses in spec-
tral interferometry [10,12], amplitude modulation is more
common for ultrafast compressive imaging. Unfortunately, an
analytical formula of the temporal resolution for the ampli-
tude modulation case is absent in literature. So we start with
a one-dimensional analysis of a chirped probe laser pulse
experiencing a transient dynamic event modulating the probe
amplitude in time, i.e., a linearly chirped probe pulse Epr(t)
is modulated in amplitude by a “Gaussian” transient event
f (t, τ) = δexp[−(t − τ)2/∆t2] with a temporal modulation depth
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δ, time delay τ, and temporal duration ∆t, in the way of
E′

pr(t, τ) = Epr(t)[1 − f (t, τ)]. The incident probe pulse in the
frequency domain is Epr(ω) = E0exp(−ω2/Ω2 + iβ2ω

2), where
Ω is the frequency bandwidth and β2 is the group veloc-
ity dispersion. In the direct frequency–time mapping scheme,
the transient event is extracted from the measured signal in
the frequency domain f ′(t, τ) = 1 − |E′

pr(αω, τ)/Epr(αω)|, where
α = 2β2(1 + β−2

2 Ω
−4) is the linear chirp coefficient. Without a

loss of generality, we study the reconstructed event f (t, τ) at
τ = 0 and assume a small modulation depth (δ ≪ 1), so

f ′(t, 0) = δ(ζ 2 + η2)1/4 exp[−(ζ − 2εη)(t/∆t)2]·
cos[(η + 2εζ)(t/∆t)2 − θ],

(1)
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The reconstructed transient event f ′(t, 0) differs from the
original one in three aspects. First, the reconstructed ampli-
tude modulation depth is always smaller than δ by a factor
of [(ζ 2 + η2)

1/4 cos θ]−1>1 [Fig. 1(a)], and the underestimation
of the modulation depth increases as ∆t decreases. Second,
the reconstructed temporal duration of the transient event is
broadened to ∆t(ζ − 2ϵη)1/2, and the temporal broadening of
the reconstruction increases for fast evolution with small ∆t
[Fig. 1(b)]. Third, the cos[(η + 2ϵζ)(t/∆t)2 − θ] term shows
an oscillating behavior of the reconstructed temporal profile.
The ratio of the broadened temporal duration to the effective
oscillation period [(η + 2ϵζ)/(ζ − 2ϵη)]1/2 is beyond 1 when ∆t
is small, and the reconstruction is harmed by the oscillation
artifacts [Fig. 1(c)].

Thus all three types of discrepancy of the reconstruction
become significant for fast transient events with small ∆t and
for the probe pulse with extensive dispersion β2Ω2. So we
define a dispersion-dependent temporal resolution of the direct
frequency–time mapping scheme

tres = (
4
Ω2

√︂
1 + β2

2Ω
4)1/2 (2)

Fig. 1. Parametric study for the reconstruction with direct fre-
quency–time mapping scheme. (a)–(c) Three critical ratios versus
transient event duration Ω∆t at different dispersion β2Ω

2. (d) Com-
parison between the reconstructed temporal modulation profiles
using direct frequency–time mapping and the original one with
different parameters.

as the minimum duration of a transient event that can be recon-
structed without significant deformation. Quantitatively, this
value results in ζ = 2, yielding a nearly

√
2-fold broadening

since 2ϵη is small especially when the dispersion is large.
For different normalized probe dispersion β2Ω

2, the tempo-
ral resolution tres [dots shown in Figs. 1(a)–1(c)] defines the
characteristic time of the transient event lower than which the
reconstruction is degraded. In addition, the effective frame num-
ber N = (1 + β2

2Ω
4)1/4 is obtained by dividing the chirped probe

pulse duration by the temporal resolution, equal to the square
root of the pulse stretch ratio.

Figure 1(d) shows temporal profile reconstructions of a tran-
sient event (black-dashed line) for different original temporal
durations ∆t and modulation depths δ using the direct fre-
quency–time mapping method. In the simulations, β2Ω

2 is set to
48 so that N = 7 is an integer. When ∆t = 2tres, the reconstructed
temporal profiles are close to the original one (brown and purple
lines), though the modulation depth is slightly underestimated
for strong modulation (δ=1). The reconstructed temporal dura-
tion is broadened when ∆t = tres (blue and green lines), and
the oscillating structure appears. Once the original temporal
duration is smaller than the resolution limit, the reconstruction
is ruined by significantly broadened oscillations (red and gray
lines). It is worth mentioning that the case of phase modulation
would exhibit similar features to the case of amplitude modu-
lation. By comparing the reconstructed temporal profile of the
transient event from a phase-modulated probe with the ground
truth (data not shown) [12,13], the distortion is more sensitive
to modulation depth δ, accounting for the self-phase modulation
effect [17].

Now we extend discussions from one-dimensional temporal
measurement to three-dimensional ultrafast compressive imag-
ing using a chirped probe pulse. Chirped pulse-based ultrafast
compressive imaging measures dynamic scenes by modulating
the probe pulse in amplitude or phase by transient events, and the
three-dimensional spectral–spatial intensity profile I(x, y,ω) is
reconstructed using a coded aperture snapshot spectral imaging
(CASSI) system which includes a coded aperture, an angular
dispersive optics, and a two-dimensional detector [18,19]. Tem-
poral information is obtained by either the direct frequency–time
mapping scheme [14,15] or measuring the complete phase pro-
file φ(x, y,ω) and calculating the spatiotemporal amplitude and
phase profiles using a full Fourier transform scheme [16].

In the direct frequency–time mapping scheme, the probe pulse
containing the dynamics scene is spatially coded by a random
binary aperture. Spatial intensity profiles for different spectral
components are sheared along one direction by angular disper-
sive optics such as a grating or a prism in experiments and
summed up on the detector, yielding the raw two-dimensional
CASSI snapshot. Finally, the CASSI reconstruction I(x, y,ω) is
directly mapped to the time domain based on the probe chirp rate
[Fig. 2(a)]. In the simulations, we assume a dynamic scene of a
rotating fan as the ground truth (GT), including three petals A, B,
and C with half angular 1/e widths of 19°, 25°, and 31°, respec-
tively [Fig. 2(b)]. We choose the rotating fan as the “model”
dynamic scene because the angular widths of fan petals in
reconstructed image frames are broadened if the dynamic scene
evolves faster than the temporal resolution, though implementing
such a rotating fan as a “model” dynamic scene in experiments is
technically challenging. We define a temporal gauge ∆t describ-
ing the evolution rate of the dynamic scene which is fast enough
to test the temporal resolution limit and even faster than pre-
viously measured dynamic scenes in experiments [14–16]. In
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Fig. 2. Principle and simulation results of the direct fre-
quency–time mapping scheme. (a) Schematic diagram of the data
acquisition process. (b) Comparison between the reconstructed
frame images and the GT at different ∆t. (c) Comparison of the tem-
poral profile at a specific spatial position between the reconstruction
and the GT.

simulations, ∆t is the time during which the petals rotate for
half angular 1/e width of petal B, e.g., 25°, and the rotation
period is 14.4 ∆t. The dynamic scene introduces an instanta-
neous temporal modulation to the amplitude of the temporally
chirped probe pulse with a modulation depth of δ =0.5.

The characteristic time ∆t of the petal rotation is varied to test
the temporal resolving capability of the probe, which is chirped
to 1470 fs from a 30 fs Fourier-limited duration pulse, deter-
mining tres =210 fs according to Eq. (2). As ∆t decreases, one
may expect that the reconstructed dynamic scene is distorted
when ∆t ∼ tres, implying that the temporal resolution limit is
reached. Figure 2(b) shows the reconstructed spatial modula-
tion evolution histories for different ∆t (i.e., 210, 150, 90, and
30 fs). Compared to the ground truth, the angular sizes of the
reconstructed three petals are broadened for all rotation peri-
ods, thus the differences among them can hardly be resolved.
In addition, the central angular positions of the reconstructed
three petals for ∆t = 90 fs are out of phase compared to the
ground truth. For ∆t = 30 fs, the three petals in the recon-
struction are even indistinguishable. To further illustrate the
temporal resolving capability, Fig. 2(c) lines out the tempo-
ral modulation of the probe at a specific spatial point shown
as an asterisk mark in Fig. 2(b). For ∆t =210 and 150 fs, the
temporal duration of transient events, i.e., passing of three
petals, is broadened. For ∆t =90 and 30 fs, the reconstructions
fail.

To improve the effective temporal resolution, an alternative
full Fourier transform scheme is applied by utilizing the phase
information of the probe. As shown in Fig. 3(a), the probe
modulated by the dynamic scene is divided by a beam split-
ter into two copies. For the near-field copy, the dynamic scene
is imaged to the coded aperture of the CASSI system. For the
far-field copy, the probe propagates in free space for enough
distance, and the diffraction pattern on the coded aperture is
captured by the CASSI system. Experimental details are avail-
able in Ref. [16]. The spatial–spectral intensity profiles at both
near and far fields are reconstructed using the standard CASSI
technique. Based on the far- and near-field intensity profiles,

Fig. 3. Principle and simulation results of the full Fourier trans-
form scheme. (a) Schematic diagram of the data acquisition process.
(b) Comparison between the reconstructed frame images and the GT
at different ∆t. (c) Comparison of the temporal profile at a specific
spatial position between the reconstruction and the GT.

a two-dimensional phase retrieval scheme is applied to obtain
the spectrally resolved wavefront information. Next the spec-
tral phase information, which in experiments is independently
measured in a separate optical path without significant spectral
dispersion or spatial chirp before the far and near-field copies are
separated, is implemented, and a full Fourier transform scheme
yields the three-dimensional spatiotemporal profile E(x, y, t) of
the modulated probe pulse.

Figure 3(b) shows the three-petal dynamic scenes extracted
from the relative modulations of the probe amplitude profiles
at different times with different rotation periods. For ∆t = {210,
150, 90} fs, the reconstructed petals retain their original shapes
with negligible deformation. The petals are only broadened
when ∆t =30 fs, but their rotations are still in phase with the
ground truth and remain distinguishable in terms of angular
width. The temporal line-outs of the probe amplitude modulation
for different petal rotation periods are plotted in Fig. 3(c). Even
for a temporal feature as fast as ∆t =90 fs [Fig. 3(c), the third
row], the reconstruction quality is satisfactory though the feature
duration is significantly lower than the temporal resolution tres

for the direct frequency–time mapping scheme. Only when the
transient event duration ∆t =30 fs is comparable to the Fourier-
limited pulse duration of the probe which is only determined by
the probe spectral bandwidth, the reconstructed temporal dura-
tion is broadened by 1.4 times [Fig. 3(c), the fourth row], which
is also close to the broadening ratio in the direct frequency–time
mapping scheme when the event duration is close to the tempo-
ral resolution determined by Eq. (2). Thus image distortions in
Fig. 3 are predominantly due to the temporal resolution limit.

We quantitatively evaluate the reconstruction qualities of the
spatiotemporal modulation on the probe laser by introducing a
mean structural similarity (MSSIM) metric [20]. The MSSIM
metric varies from 0 to 1, and a high value of MSSIM rep-
resents that the reconstructed dynamic scenes are close to the
ground truth. Figure 4 shows MSSIM parameters for recon-
structions of the rotating petals with different rotation periods,
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Fig. 4. MSSIM values of the three schemes for different ∆t, FFT
for the full Fourier transform approach, DFTM for the direct fre-
quency–time mapping approach, and PM for the case of perfect
mapping, a direct frequency–time mapping scheme without CASSI
reconstruction.

using both the direct frequency–time mapping (DFTM) (blue)
and the full Fourier transform (FFT) approaches (red). We have
also directly mapped the calculated probe spectral–spatial inten-
sity profile I(x, y,ω), rather than the CASSI reconstruction, to
the time domain, yielding reconstructions of dynamics scenes
denoted as “perfect mapping” (PM) (gray). MSSIM for the direct
frequency–time mapping and the perfect mapping schemes are
close, excluding the possibility that the CASSI reconstruction
degrades the imaging reconstruction quality.

Furthermore, the MSSIM metric for the direct frequency–time
mapping scheme are significantly lower than those for the full
Fourier transform scheme. When ∆t = 210 fs which equals to
tres in Eq. (2), the MSSIM values for both the direct map-
ping and the perfect mapping schemes are around 0.65 (Fig. 4,
black-dashed line). In contrast, for the full Fourier transform
scheme, a similar MSSIM value is obtained even when ∆t is
as small as 30 fs, similar to the Fourier-limited pulse duration
of the probe. In this case, it is the probe spectral modulation
instead of the probe chirp that encodes all necessary temporal
information of transient events. So the probe spectral band-
width sets the bandwidth limit of temporal measurements and
determines the temporal resolution of the full Fourier transform
scheme.

Finally, it is noted that we assume unlimited spatial resolu-
tions in all simulations, in order to highlight the limiting effect of
temporal resolution. Compared to ordinary imaging techniques
whose spatial resolutions are determined by light wavelength
and imaging numerical aperture, that of compressive imaging
is further complicated by the pixel size of the coded aperture
and the image reconstruction artifacts. In experiments, the coded
aperture pixel size together with the imaging magnification can
be optimized to reduce its degradation to the spatial resolution
[16], thus even nanoscale spatial resolution can be achieved for
compressive imaging [21]. On the other hand, novel reconstruc-
tion algorithms have been progressing to reduce artifacts and
preserve the spatial resolution [22]. Therefore, our assumption
of unlimited spatial resolution is valid and reasonable.

In conclusion, we have clarified temporal resolutions of dif-
ferent ultrafast compressive imaging implementations using a

single-chirped optical probe. To decode temporal information
of transient events from spectral modulations of the probe, the
probe phase is necessary to conduct the full Fourier transform
scheme, and a temporal resolution only determined by the probe
spectral bandwidth can be obtained. Moreover, the full Fourier
transform scheme provides both amplitude and phase modu-
lations of the probe pulse, enabling complete characterization
of optical properties, i.e., complex refractive index, of objects
undergoing ultrafast evolution. Thanks to the temporal reso-
lution of the full Fourier transform scheme which is as short
as the inverse of the probe bandwidth, as well as nonlinear
spectral broadening [23] and optical wave synthesis [24] tech-
niques, ultrafast compressive imaging at a quadrillion effective
frame rate is promising using an optical probe with a spectral
bandwidth beyond one or more octaves.
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