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Single-shot 2-dimensional optical imaging of transient phenomena is indispensable for numerous areas 
of study. Among existing techniques, compressed ultrafast photography (CUP) using a chirped ultrashort 
pulse as active illumination can acquire nonrepetitive time-evolving events at hundreds of trillions of 
frames per second. However, the bulky size and conventional configurations limit its reliability and 
application scopes. Superdispersive metalenses offer a promising solution for an ultracompact design with 
a stable performance by integrating the functions of a focusing lens and dispersive optical components 
into a single device. Nevertheless, existing metalens designs, typically optimized for the full visible 
spectrum with a relatively low spectral resolution, cannot be readily applied to active-illumination CUP. 
To address these limitations, here, we propose single-shot compressed ultracompact femtophotography 
(CUF) that synergically combines the fields of nanophotonics, optical imaging, compressed sensing, 
and deep learning. We develop the theory of CUF’s data acquisition composed of temporal–spectral 
mapping, spatial encoding, temporal shearing, and spatiotemporal integration. We also develop CUF’s 
image reconstruction via deep learning. Moreover, we design and evaluate CUF’s crucial components—a 
static binary transmissive mask, a superdispersive metalens, and a 2-dimensional sensor. Finally, using 
numerical simulations, CUF’s feasibility is verified using 2 synthetic scenes: an ultrafast beam sweeping 
across a surface and the propagation of a terahertz Cherenkov wave.

Introduction

Single-shot compressed ultrafast imaging is a cutting-edge para-
digm that allows capturing ultrafast dynamic phenomena occur-
ring in 2-dimensional (2D) space [1]. By combining the power 
of compressed sensing (CS) and ultrafast imaging, this approach 
can physically acquire a large number of frames of high-resolution 
images in a single shot, followed by computational reconstruction 
to retrieve the movie of the event. Single-shot compressed ultra-
fast imaging has rapidly attracted substantial interest in physics, 
biology, chemistry, materials science, and engineering. It provides 
unprecedented insights into many phenomena, such as shock 
wave interaction with live cells [2], ultrashort pulse propagation 
[3], phosphorescence emission evolution [4], instantaneous light 
scattering [5], and exciton dynamics in photosynthetic light har-
vesting [6].

Among existing techniques of single-shot compressed ultra-
fast imaging, a pioneering technique is compressed ultrafast 
photography (CUP) [7], which works by synergically combin-
ing a scheme of 2D spatial encoding using a single static 
binary transmissive mask with temporal shearing performed 
by a streak camera with a fully opened entrance slit. As an 

innovative computational imaging technique, CUP has set a 
global benchmark for imaging speed, reaching an unprece-
dented 10 trillion frames per second (Tfps) in passive imaging 
[8] and >200 Tfps using active illumination [9]. It has a 
sequence depth (i.e., the number of frames in each recorded 
movie) of up to 1,000 frames [3] and is compatible with various 
modalities for microscopic, mesoscopic, and macroscopic 
imaging. With such an unprecedented real-time imaging speed, 
CUP is perfectly suited for the accurate observation of many 
nonrepeatable or difficult-to-repeat complex phenomena and 
processes formerly inaccessible to pump–probe-based ultrafast 
imaging, including laser ablation for materials processing [10], 
light propagation in a scattering medium [11], and optical cha-
otic dynamics [12]. Leveraging the high universality of its sens-
ing model, the concept of CUP has been implemented in 
diverse hardware configurations [13]. Meanwhile, deep learn-
ing has been increasingly implemented in single-shot com-
pressed ultrafast imaging systems to enhance the image quality 
and speed in reconstruction, which assists the development of 
high-level tasks involving complex data and decision-making, 
the optimization of spatial encoding masks, and the sensing of 
temporal shearing [14,15].
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Within the existing configurations, of our particular inter-
est are CUP systems using an ultrashort chirped pulse as active 
illumination [9,16–19]. When such a pulse is used to probe a 
dynamic event, the temporal information is linearly mapped 
to the spectrum. On the detection side, after spatial encoding, 
a spatial dispersion element, such as a prism or a grating, 
shears individual wavelengths to different spatial positions. 
This modality transfers the burden of temporal shearing to the 
spectral bandwidth and temporal duration of the illumination 
pulse. Leveraging the advances in ultrafast laser science, this 
modality is poised to overcome limitations imposed by state-
of-the-art ultrafast optoelectronic devices. Recent develop-
ments have pushed the imaging speed to 256 Tfps [8,9,16]. 
Despite their dazzling performance and high potential, these 
systems are often limited by their bulky configurations. In 
particular, temporal shearing and imaging are accomplished 
using different optical components, which are prone to mis-
alignment and nonlinear shearing from various disruptions 
(e.g., vibration). Moreover, provided the fixed dispersion abil-
ity of gratings or prisms, long-focal-length lenses are needed 
to guarantee high spectral resolution and hence high imaging 
speed. Thus, it is challenging to reduce the system size, which 
limits the use of active-illumination CUP in research and com-
mercial applications, including single-shot pulse characteriza-
tion in ultrafast laser apparatus [20] and monitoring of ultrafast 
laser processing of materials [21].

To circumvent these drawbacks, ultracompact snapshot imag-
ing systems (USISs) based on metasurfaces have emerged as a 
potent approach for high-dimensional (e.g., spatiospectral [22], 
volumetric [23], multispectral-chiral [24], and spectropolarimet-
ric [25]) data recording in a single exposure. Metasurfaces allow 
for the flexible control of light properties (e.g., amplitude, phase, 
and polarization) at subwavelength scales. This advantage has 
shed light on a wide range of applications requiring high-quality 
imaging with a restricted system size [26]. Such metasurface-
based USISs are highly suitable for snapshot spectral imaging 
because they are designed to integrate the functions of an imag-
ing lens and a dispersive optical component into a single device 
[22]. Metasurfaces have also been used as a compact component 
for intracavity modulation of ultrashort pulses [27], showing 
their potential to reduce the system size and complexity.

Although burgeoning in optical sensing, metalens-based 
USISs still have ample room to develop for ultrafast imaging 
applications. At the device level, most works focused on embed-
ding multifunctionalities of imaging and sensing (e.g., light 
field, focusing, dispersion, aberration correction, and polariza-
tion) in metalenses rather than exploring their potential in 
compressed coded-aperture imaging techniques [26]. At the 
system level, existing configurations in metalens-based spectral 
imaging are typically designed to cover the entire visible spec-
tral range with a spectral resolution of 5 to 10 nm [28,29]. 
Considering that the bandwidth of a typical femtosecond pulse 
is 10 to 40 nm, the limited spectral resolution in existing sys-
tems makes them impractical for active-illumination CUP.

To address such limitations, we propose single-shot com-
pressed ultracompact femtophotography (CUF)—a new super-
dispersive metalens-based computational ultrafast imaging 
modality. Materials and Methods presents CUF’s data acquisi-
tion model based on the CS theory and its image reconstruction 
framework based on deep learning. Results and Discussion first 
describes the design details of 3 crucial components—an encod-
ing mask, a superdispersive metalens, and a 2D sensor—for 

CUF. Then, it discusses the theoretical validation of CUF via 
numerical simulations using 2 representative ultrafast scenes. 
Conclusion summarizes this work and provides a perspective 
of CUF. Overall, this work provides the first theoretical inves-
tigation that verifies the feasibility of metalens-based systems 
for single-shot real-time ultrafast imaging. The established 
framework will guide the future prototype construction and 
experimental validation.

Materials and Methods

Sensing model of CUF
CUF is schematically shown in Fig. 1. Its data acquisition starts 
by using a linearly chirped ultrashort pulse to probe a dynamic 
scene denoted by F ∈ ℝ

Nx×Ny×NL, where Nx and Ny represent 
the data lengths in the 2 spatial dimensions, and NL represents 
the data length in the spectral (hence temporal) dimension. 
This time-spectrum mapping procedure (denoted by M ∈ ℝn×n 
with n = NxNyNL) stores temporal information across the spec-
tral band of the probe pulse [30]. Imaged by the front optics 
onto a single static (x, y) binary transmissive mask, the trans-
mitted light is spatially encoded (denoted by C ∈ ℝn×n). Then, 
the light is relayed by a metalens to an off-axis 2D sensor with 
unity magnification. The metalens also shears spectral infor-
mation along a spatial axis (denoted by S ∈ ℝ

mNL×n with 
m = Nx[Ny + (NL − 1)]). Finally, the resulting encoded and 
sheared scene is integrated by the sensor (denoted by T ∈ ℝ

m×mNL), 
producing a compressively recorded 2D snapshot (denoted 
by G ∈ ℝ

Nx×[Ny+(NL−1)]). Overall, CUF’s forward model is 
expressed as

Here, f ∈ ℝn×1 is the discrete vector representation of the 
probe pulse modulated by the dynamic scene F. g ∈ ℝm×1 
is the vectorial version of the snapshot G. ϵϵ ∈ ℝm×1 repre-
sents the noise added to the snapshot during data acquisition. 
Φ = TSCM ∈ ℝm×n is the CUF’s sensing matrix. More details 
of CUF’s forward model are explained in Note S1.

(1)g =�f + �.

Fig. 1. Design of single-shot compressed CUF using a superdispersive metalens; BN, 
batch normalization; Conv, convolutional; ReLU, rectified linear unit.
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Image reconstruction based on a  
deep-learning approach
To recover the dynamic scene, the acquired snapshot is input 
to a convolutional neural network (CNN)-based algorithm 
composed of 2 cascaded neural networks: a deep-unfolding net 
that embodies CUF’s sensing model and a U-net [31] that takes 
the output of the first network to improve image reconstruction 
(Fig. 1). This CNN-based algorithm leverages the merits of both 
the alternating direction method of multipliers (ADMM) [32] 
and the network-based CS methods by mapping one iteration 
of the ADMM steps to a deep network architecture. Manifesting 
the “splitting-and-optimization” approach embedded in the 
ADMM, this design is memory efficient and thus essential for 
learning to reconstruct the (x, y, t) datacube of the dynamic 
scene (denoted by ̂F ∈ ℝ

Nx×Ny×NL). In this regard, CUF’s image 
reconstruction is formulated as

Here, �( ⋅ ):ℝn×1
→ ℝ is a regularizer. z ∈ ℝn×1 is an aux-

iliary variable. To learn the CNN’s weights, the loss function 
( ⋅ ):ℝNx×Ny×NL

→ ℝ is established as

where  is the direct sensing operator, 𝑙1(·) is the 𝑙1-norm, and 
𝑙SSIM(·) represents the structural similarity (SSIM) index. A 
detailed explanation of the image reconstruction algorithm is 
included in Note S2.

Results and Discussion

Design and evaluation of key components in CUF
Mask
The mask, as the first of the 3 essential components of CUF, is 
responsible for spatial encoding. In CUF, a static binary trans-
missive mask is used to passively encode the dynamic scene, 
which allows a compact design. We designed the mask by 
using a customized layer that incorporated a sigmoid function 
Rix ,iy

= (1 + e
−�ix,iy )−1, where θix,iy (ix = {0, …, Nx − 1} and 

iy = {0, …, Ny − 1}) represent the layer’s weights and were ini-
tialized with random values. Interfacing CUF’s CNN (see Fig. 1), 
this layer molded the mask structure, which was guided by 

the CUF’s sensing geometry and the spatiotemporal features 
of the training data. A constraint function [33] (denoted by 
( ⋅ ):ℝNx×Ny

→ ℝ), whose minima were obtained only when 
Rix,iy were 0 or 1, was used to generate the binary mask

As shown in Fig. 2A, the designed mask has several advan-
tages compared to the conventional pseudo-random binary 
mask (detailed in Note S3). First, it reduced the content in 
the low-frequency range (Fig. 2B) [34]. As a result, the cross-
correlation of any 2 different columns obtained an average 
correlation coefficient of 0.47 (Fig. 2C), showing better linear 
independence against the random mask with an average cor-
relation coefficient of 0.49. Moreover, its structure enabled 
the acquisition of compressed measurements with a more 
uniform pixel intensity distribution and a higher dynamic 
range (Fig. S1).

The mask’s encoding pixel size, determined by the metalens 
diameter and focal length (see Metalens) as well as the sensor 
pixel size (see Sensor), was fixed at 11.6 μm. Finally, the size of 
512 × 512 encoding pixels was used to limit the CUF’s field 
of view (FOV), ensuring a full capture of the compressively 
recorded 2D snapshot by the sensor.

Metalens
We designed a polarization-insensitive superdispersive met-
alens made of Si3N4 (refractive index nSi3N4) meta-atoms on a 
SiO2 (refractive index nSiO2) substrate to accommodate the 
specifications of a frequency-doubled ytterbium femtosecond 
laser (central wavelength of λc = 515 nm; spectral bandwidth 
of Δλ = 16 nm [35]). The hyperbolic phase profile of the super-
dispersive metalens exhibited a wavelength-dependent focal 
length (f) [36]. Among possible meta-atom shapes (e.g., paral-
lelepipeds [37–39], cylinders [40,41], and elliptic cylinders 
[42]), we used polarization-insensitive cylinders arranged in 
a square lattice (Fig. 3A), which exploited variations in the 
meta-atoms radius (rc) to obtain a phase coverage of 2π [29,30].

To determine the optimal metalens configuration, we con-
ducted a parameter sweep by varying meta-atom period (Λ), 
rc, and thickness (d) (marked in Fig. 3A) with 3 restrictions. 
First, Λ must be smaller than the light wavelength in SiO2 (i.e., 

(2)minimizef,z‖g−�f‖22 + �(z), subject to z = f.

(3)

(

F, F̂

)

= l1

(

F, F̂

)

+ lSSIM

(

F, F̂

)

+ l1

(

G,

(

F̂

))

,

(4)(R) =

Nx−1∑

ix=0

Ny−1∑

iy=0

(
Rix ,iy

)2(
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Fig. 2. Design of the encoding mask for CUF. (A) Designed binary mask. (B) Fourier spectrum of (A). The dc component was set to zero for display purposes. (C) Two-dimensional 
cross-correlation map of columns in (A).
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Λ < λc/nSiO2). Second, d must be chosen so that the phase mod-
ulation covers the full 2π range [41]. Third, the minimum value 
of the cylinder aspect ratio (i.e., 2rc/d) was limited to 1/8, for 
compatibility with commonly used metasurface fabrication 
techniques (such as electron-beam lithography [41]). The behav-
ior of the meta-atoms was simulated using a finite-difference 
time-domain algorithm (Ansys Lumerical) to solve Maxwell’s 
equations for the propagating electromagnetic field. This analy-
sis led to the optimized values of Λ = 270 nm, d = 760 nm, and 
rc = 50 to 130 nm. The results show an almost constant trans-
mittance of ~90% for all the values of rc, and 2π coverage of the 
phase profile for the entire targeted spectral band (i.e., λc = 
515 nm and Δλ = 16 nm). As an example, the corresponding 
transmission and phase profile for the central wavelength are 
illustrated in Fig. 3B.

Using these parameters, we designed a superdispersive lens 
producing spectral shearing along the x′ direction in the focal 
plane (Fig. 3C and D). The lens’ phase profile was constructed 
by using the meta-atoms with a suitable rc according to the 
radius-phase mapping shown in Fig. 3B. We simulated a lens that 
focused light at an angle α = sin−1(xf/f), where xf is the x′ coor-
dinate of the focus. The diameter of the simulated metalens was 
set to 200 μm, a limit imposed solely by the computational capac-
ity of our workstation. The dispersion angle was chosen to be α = 
45° for λc = 515 nm, so that light beams at different wavelengths 
could be detected and well resolved on the camera plane.

As the next step, we simulated several metalenses exhibiting 
different focal lengths (f = 0.5 to 5.5 mm) to obtain a good focus-
ing efficiency (FE) and have a large shearing distance in the x′ 

direction for the considered spectral range (Δxfb = xf@523 − xf@507). 
Here, FE is defined as the ratio of the total intensity in a circular 
aperture at the focal plane with a radius 3 times the full width at 
half maximum (FWHM) of the focal spot to the total intensity 
of the light transmitted through the lens. Because FE and Δxfb 
showed opposite trends with the increase of the focal length, we 
looked for the focal length value that maximizes a merit function 
defined by their product (i.e., ξ1 = FE ∙ Δxfb). As shown in Fig. 
3E, the evaluation pinpoints the optimized focal length of f = 
3.705 mm, at the wavelength λc.

Finally, using the designed metalens, we retrieved the point 
spread functions (PSFs) on the focal plane for the targeted spec-
tral range in a FOV of 1.5 mm × 1.5 mm (Fig. 3F). PSFs from 
representative positions in the FOV are shown in the left panel 
of Fig. 3F. At the center, the FWHMs of the PSFs and the shear-
ing distance were evaluated to be 10.5 ± 0.5 μm (mean ± stan-
dard deviation) and Δxfb = 162.7 μm, resulting in a dispersion 
coefficient of μ = 10.15 μm · nm−1. From the center to the 
periphery, the PSF’s FWHM increased to 16.3 ± 1.5 μm, which 
was attributed to the increased propagation distance. Notably, 
the shearing remained the same, as shown in Fig. 3G. These 
results showed low spatial distortion in PSFs and nearly spatial 
invariance in the shearing distance. All these characteristics 
were built into CUF’s sensing model to accurately reconstruct 
the ultrafast video (see details in Notes S1 and S2).

Sensor
The 2D sensor is the last essential component of CUF, respon-
sible for capturing a compressed snapshot of the dynamic scene. 
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Fig. 3. Design of the superdispersive metalens for CUF. (A) Schematic of the cylinder meta-atom employed for the design of the metalens, where rc, d, and Λ are the meta-atom 
radius, thickness, and meta-atom period, respectively. (B) Amplitude transmission (blue line) and phase profile (red line) of the cylinder meta-atom with rc varying from 50 to 
130 nm. (C) Working principle of the metalens, where f and α are the focal length and the focusing angle, respectively. (xf, yf, zf) are the coordinates of the focus. (D) Top view 
(top panel) of the designed metalens and 3D zoomed-in view of its central region (bottom panel). (E) Merit function, ξ1, of the simulated metalenses as a function of the focal 
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Sensor specifications can affect the compressed image quality, 
frame rate, compression ratio, and hence both spatial and tem-
poral resolution, as well as the sequence depth. The frame rate 
and the sequence depth of the CUF system are derived from

and

respectively. Here, η is the chirping parameter of the probe 
pulse, ds is the sensor pixel size along the temporal shearing 
direction, and (Δλ · μ) is the sheared distance. Furthermore, 
the FOV in CUF is determined by the size of the encoding 
mask, the sensor, the sequence depth, and the overall magni-
fication ratio of the system.

To investigate the effectiveness of CUF, we carried out an 
ablation analysis of how the sensor pixel size and spectral beam 
separation affect the reconstruction performance (Fig. 4). For 
this analysis, we used the specifications of 3 off-the-shelf sen-
sors with pixel sizes of ds = 2.9 μm (Sensor 1, Starlight IMX462-
99 IR-CUT with 1,920 × 1,080 pixels), ds = 3.4 μm (Sensor 2, 
FLIR BFS-GE-16S2C-BD2 with 1,440 × 1,080 pixels), and 
ds = 5.8 μm (Sensor 3, FLIR GS3-U3-23S6M-C with 1,920 × 
1,200 pixels). Then, to examine the spectral shearing opera-
tion, we selected 8 bandwidths of Δλ = {4, 6, 8, 9, 10, 12, 14, 
16} nm. The FOV for the 3 sensor configurations was limited 
by the mask to a value of 1.5 mm × 1.5 mm. Finally, to promote 
a fair comparison in the training and reconstruction, we defined 
a baseline database generated from Sensor 1 specifications, 
which was used to construct the databases for Sensor 2 and 

Sensor 3. The baseline database was created from the “Challenge 
on Spectral Reconstruction from RGB Images” database [43]. 
To train the CNN weights, we randomly selected and cropped 
800 datacubes with Nx × Ny = 512 × 512 pixels (for Sensor 1), 
Nx × Ny = 430 × 430 pixels (for Sensor 2), and Nx × Ny = 256 × 
256 pixels (for Sensor 3). NL for all 3 sensors (with the 8 selected 
bandwidths) were determined via Eq. 6. All simulations were 
implemented in Tensorflow [44] and trained on Intel Core i9 
12900K 3.2GHz with a GeForce RTX 3090 GPU (32GB RAM) 
using the ADAM optimizer [45].

We established a merit function as the product of the modula-
tion transfer function (MTF) and the sequence depth (i.e., 
ξ2 = MTF × NL). For this analysis, we designed a negative line-
pair target with a density of 21.6 lp/mm as a static target. The 
reconstructed result was compared to the ideal case (i.e., MTF = 
1). As shown in Fig. 4, this comparison reveals high reconstruc-
tion accuracy (i.e., ξ2 ≥ 0.98NL) for the scenarios with NL ≤ 27 
frames (i.e. Δλ = 8 nm) for Sensor 1, NL ≤ 25 frames (i.e., Δλ = 
9 nm) for Sensor 2, and NL ≤ 17 frames (i.e., Δλ = 10 nm) for 
Sensor 3. Beyond this deflection point, the merit metric decreases 
by up to 9%. This result showed that Sensor 1, which had the 
smallest pixel size, could recover sharper spatial features. However, 
the fixed CNN’s ability to handle spatial and temporal informa-
tion indicated a trade-off between the (x, y) image size (i.e., 
Nx × Ny) and the sequence depth (i.e., NL), which was demon-
strated by the tolerance of Sensor 3 to higher bandwidths with a 
lower merit function. Additional details of image reconstruction 
ablation are provided in Note S4.

Feasibility demonstration via simulation
CUF of a beam sweeping across a surface
To demonstrate CUF’s feasibility in ultrafast imaging, we con-
ducted simulation validations using 2 representative scenes. First, 
we emulated CUF in a dynamic scene where a temporally chirped 
pulse with a front tilt shone on a negative resolution target with 
line pairs whose densities ranged from 19.2 to 172.4 lp/mm. The 
incident pulse could be generated by combining temporal (e.g., 
using a glass rod) and spatial (e.g., using a grating pair [16]) 
chirps. For this simulation, we created a synthetic dataset with a 
FOV of 1.5 mm × 1.5 mm and a pixel size ds = 2.9 μm (Sensor 
1). Using the chirp parameter in [20] (i.e., η = 65.6 fs ∙ nm−1), a 
bandwidth of Δλ = 16 nm, and a temporal Gaussian profile, we 
simulated an imaging speed of r = 53.3 Tfps and a sequence depth 
of NL = 56 frames. The resulting training database comprises 
900 videos with Nx × Ny × NL = 512 × 512 × 56 pixels. Based on 
Eq. 1, the spatially encoded and temporally sheared scene was 
spatiotemporally integrated to form a compressed measurement 
with a size of up to 512 × 567 pixels. After data acquisition, the 
deep-learning reconstruction algorithm recovers a datacube with 
the loss function defined in Eq. 3.

The proposed CUF methodology reconstructed this tran-
sient scene. Five exemplary frames of the scene (as the ground 
truth) and their corresponding frames reconstructed by CUF 
are shown in Fig. 5A. The full reconstruction (Movie S1) shows 
swift sweeping of the illumination across this target. To further 
analyze CUF’s spatial reconstruction accuracy, the ground truth 
and the reconstruction were temporally integrated (Fig. 5B). 
The comparison of 6 representative local regions with differ-
ent line-pair densities shows good accuracy in CUF’s recon-
struction for the line pairs with a density of up to 49 lp/mm. 
Moreover, to quantify CUF’s applicability, we tested 100 scenes 

(5)r =
�
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Fig. 4. Merit function, ξ2, across 3 sensors over different illumination bandwidths for 
the density of 21.6 lp/mm.
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that had the same illumination condition in Fig. 5A but differ-
ent patterns. Shown in Fig. 5C, the results reflect a high aver-
aged peak signal-to-noise ratio (PSNR) of 35.1 ± 7.3 dB and 

SSIM index of 0.96 ± 0.03. Finally, to demonstrate the CUF’s 
ability to retrieve information on the sample illumination, we 
averaged each frame in the vertical direction for both the 
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Fig. 5. Simulation of CUF for a spatiotemporally chirped ultrashort laser pulse transmitted through a line-pair target. (A) Five selected frames of the ground truth and the CUF 
reconstruction. (B) Time-integrated images and comparison of 6 representative line-pair targets with different densities. (C) Statistical analysis of peak PSNRs and SSIM 
indices of the reconstructed results using 100 testing datacubes. (D) Comparison of the estimated illumination profile with the ground truth. (E) Time course of the relative 
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ground truth and the reconstruction. The line profile of the 
reconstruction was then divided by that of the ground truth 
for each nonzero-intensity pixel. In this way, the pulse front tilt 
in the illumination is shown in Fig. 5D. The reconstruction 

shows excellent quality with 33.5 dB in PSNR and 0.98 in SSIM. 
Using this result, the time course of relative errors of the hori-
zontal position of the illumination center was calculated, which 
yielded an average error of 0.6 ± 0.4% (Fig. 5E).

A

B

C D

Fig. 6. Simulation of CUF of a propagating Cherenkov wave. (A) Five selected frames of the ground truth and reconstruction. The apex locations in Frame 1 and Frame 28 are 
marked by the white dashed line and the white dashed-dotted line, respectively. (B) Left column: Time courses of the reconstructed circle’s radius, apex location, and cone 
angle between the ground truth and the CUF reconstruction. Right column: Time courses of relative errors of the results shown in the left column. (C) Statistical analysis of 
PSNRs from 100 emulated test scenes. (D) Comparison of the estimated spectral intensity profile from the CUF reconstruction in (A) with the ground truth.
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CUF of a propagating terahertz Cherenkov wave
In the second ultrafast phenomenon simulation, we emulated 
CUF of a propagating Cherenkov wave in a nonlinear crystal. 
This phenomenon could be generated by focusing a near-infrared, 
millijoule-level, femtosecond laser pulse into a bulk lithium 
niobate (LiNbO3) single crystal [46]. The generated terahertz 
Cherenkov wave could be imaged using a temporally lin-
early chirped probe beam propagating perpendicularly to the 
Cherenkov wave propagation direction. We created a synthetic 
dataset by using the experimental conditions mentioned in 
[46]. In particular, the focused laser pulse had a propagation 
speed of 1.37 × 108 m·s−1, and the terahertz Cherenkov wave 
had a cone angle of θc = 60.0 ± 1.0°. We simulated CUF of this 
event at an imaging speed of r = 23.6 Tfps using Sensor 3 (i.e., 
ds = 5.8 μm) and the chirp parameter η = 74.1 fs·nm−1. The 
resulting training database comprises 1,800 videos with 
Nx × Ny × NL = 256 × 256 × 28 pixels. To promote an accurate 
reconstruction of the high-spatial-frequency components in 
the structure of the Cherenkov wave, the loss function was 
slightly modified to , 
where  with  
Here,  and  
are the direct and inverse 2D discrete Fourier transform opera-
tors, respectively; B ∈ ℝ

Nx×Ny×NL represents the binary circular 
high-pass filter with a diameter of 125 μm; ⊗ represents the 
element-wise Hadamard product.

CUF showed its feasibility to accurately reconstruct the 
datacube. As shown in Fig. 6A, 6 selected frames of the ground 
truth are compared with their corresponding reconstructed 
frames. The full movie is shown in Movie S2. To quantitatively 
analyze the reconstruction, Fig. 6B presents the time evolution 
of the radius of the transition-like radiation (associated with 
the spherical wave first observed in [46]), the centroid on the 
cone apex, and the cone angle. The average error in the Cherenkov 
cone geometry estimation was calculated to be 2.3%. Moreover, 
we generated 100 emulated Cherenkov radiation videos, where 
the starting spatial location of the cone apex and the cone angle 
were randomly varied. Figure 6C shows the time course of the 
reconstructions with an averaged PSNR of 29.7 ± 2.3 dB. To 
quantitatively analyze CUF’s ability to measure the illumination 
features, Fig. 6D presents the precise matching between the 
emulated spectral intensity profile to the one estimated directly 
from the CUF’s reconstruction. The accuracy estimation in the 
spectral intensity profile was calculated to be 99.5 ± 0.2%. These 
results show CUF’s robustness in accurately sensing ultrafast 
phenomena and recovering the illumination spectral profile 
with high accuracy.

Conclusion
Our analytical modeling and simulation have shown that the 
synergy of a chirped ultrashort pulse, a superdispersive met-
alens, CS, and neural network-based image reconstruction can 
realize intelligent ultracompact ultrafast imaging. CUF com-
pressively records a dynamic scene in a 2D snapshot, which is 
then processed by a CNN that uses the framework of ADMM 
to promote a higher resonance between the PSF-based CUF’s 
sensing model and the training of the CNN’s weights. The set 
of 2 parallel layers is built to model the direct sensing and 
the transpose process operations involved in CUF’s inverse 
problem. The design of 3 crucial components in CUF is described 

in detail. A transmissive binary mask is designed to promote a 
uniform pixel intensity distribution and a higher dynamic 
range. For the metalens, polarization-insensitive cylinder 
meta-atoms are used to produce full 2π phase coverage with 
~90% transmittance for all the investigated radii values. Along 
with the encoding mask, the metalens-engineered dispersive 
response allows the mixture of temporal and spatial informa-
tion in the compressively recorded snapshot. Finally, CUF is 
successfully evaluated using 3 different sensor configurations 
with pixel sizes ranging from 2.9 to 5.8 μm. Numerical simula-
tions demonstrate high-quality reconstruction using the CUF 
paradigm in 2 representative ultrafast dynamic scenes, which 
provides the first feasibility verification of metalens-aided 
compressed ultrafast imaging.

This study lays the theoretical foundation for the future devel-
opment of the CUF prototype. In particular, the chirped ultrashort 
laser pulse of the targeted spectral bandwidth can be generated by 
a frequency-doubled ytterbium femtosecond laser [35]. The met-
alens can be realized by first depositing a Si3N4 film using plasma-
enhanced chemical vapor deposition and then patterning it via 
electron-beam lithography [47]. The designed mask can be cus-
tomized using high-resolution printing [4]. Finally, the sensor can 
be chosen from commercially available off-the-shelf products. 
Along with the short focal length of the designed metalens (i.e., 
f = 3.705 mm), the availability of existing techniques provides 
a viable path to the development of an ultracompact prototype. It 
is envisaged that CUF will provide a versatile platform with a scal-
able spatial resolution by coupling various imaging modalities 
from microscopes to telescopes and with various charge-coupled 
device/complementary metal-oxide semiconductor cameras. 
Leveraging on the simultaneous use of shearing and imaging pro-
vided by the metalens and the superior reconstructed image qual-
ity offered by the deep-learning algorithms, CUF is expected to be 
implemented and improve the reliability and stability of various 
femtophotography applications, such as in imaging longitudinal 
ultrafast all-optical switching [48], sensing irreversible chemical 
reaction dynamics of organic crystals [49], and evolution of plasma 
wakes in a laser wakefield accelerator [50].
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